Aspen Winter 2009 Workshop on Physics at the LHC era (Feb 8-14, 2009)

Top Quark Measurements at the Tevatron

Zhenyu Ye / Fermilab

for CDF and DØ Collaborations

Why is Top Interesting?

- Discovered by CDF and DØ in 1995.
- Pair production by strong interaction. EW decay and single production.
- Top+W mass constrain SM Higgs mass.
- A major background for Higgs and NP searches.
- Most of the interests come from the potential to find NP, e.g., why is it so heavy? Is it the SM top? ...

Why is Top Interesting?

Why is Top Interesting?

Tevatron At Fermilab

The only place that has produced top quarks!

Excellent performance:

- Record instantaneous lumi.: 3.5x10³² cm⁻²s⁻¹
- Total delivered ~5.8 fb⁻¹
- Results based on <3.5 fb⁻¹
- Projected ~10 fb-1 by end of FY10

CDF and Dzero Detectors

Selected Results

- Single top production
- cross section (|Vtb|, anomalous coupling)
- Top pair production
- cross section, M(ttbar) spectrum
- search for new physics (ttH, t')
- Top decay
- branching ratio, FCNC, rare decay
- charged Higgs search
- W-helicity
- Top mass

Single Top Production

Direct access to the Wtb coupling

- overall rate and ratio between s- and t-channels are sensitive to NP
- Experimental challenge:
- -cross section ~ half of the ttbar
- -mostly done in lep+MET+jets
- -large backgrounds from W+2 jets
- -S/B ~ I/200 before b-tagging
- Need multivariate techniques to extract signal.

Single Top Production

Direct access to the Wtb coupling

- overall rate and ratio between s- and t-channels are sensitive to NP
- Experimental challenge:
- -cross section ~ half of the ttbar
- -mostly done in lep+MET+jets
- -large backgrounds from W+2 jets
- -S/B ~ I/200 before b-tagging
- Need multivariate techniques to extract signal.

Neural Network: Train with MC to optimize weight

Boosted Decision Trees: Train with MC to determine the shape of the tree

Matrix Element:

Calculate signal/background probabilities from the cross section Matrix Element and detector resolutions

Single Top Production – Cross Section, V_{tb}

CDF and DØ tb+tqb Cross Section

 σ =2.2 ±0.7pb

5. I σ exp. significance 3.7 σ obs. significance 0.66<| V_{tb} | \leq I at 95% C.L.

2.3 σ exp. significance 3.6 σ obs. significance 0.68< $|V_{tb}| \le 1$ at 95% C.L.

Single Top Production – Cross Section, V_{tb}

Constraints on Anomalous Couplings

Selected Results

- Single top production
- search, cross section (|Vtb|, anomalous coupling)
- Top pair production
- cross section, M(ttbar) spectrum
- search for new physics (ttH, t')
- Top decay
- branching ratio, FCNC, rare decay
- charged Higgs search
- -W-helicity (anomalous coupling)
- Top mass

Top Pair Production

Top Pair Branching Fractions

100% t→W+b in SM

ΓSM≈1.4 GeV at m=175 GeV

main background:

- W/Z + jets
- multi-jets

event selection by:

- event kinematics and topology
- isolated lepton (optional)
- MET (optional)
- b-jet ID (optional)

Top Pair Production - Cross Section

Measure in different final states. NP may affect differently.

CDF combined $(0.3-2.8 \text{ fb}^{-1})$: $7.0\pm0.3(\text{stat})\pm0.4(\text{syst})\pm0.4(\text{lumi}) \text{ pb}$

DØ combined $(0.4-2.2 \text{ fb}^{-1})$: $7.8\pm0.5(\text{stat})\pm0.6(\text{syst})\pm0.5(\text{lumi}) \text{ pb}$

Top Cross Section - Top/Z Ratio

CDF Run II Preliminary L = 2.7 fb⁻¹

Data
Top (7.1pb)
Single Top
W + HF
Mistags
Non-W
Z + jets
Di-boson

1 Jet 2 Jets 3 Jets 4 Jets ≥5 Jets

CDF NN (2.8 fb⁻¹): 6.9±0.4(stat)±0.4(syst)±0.1(theo) pb

CDF btagged (2.8 fb⁻¹): $7.0\pm0.4(stat)\pm0.6(syst)\pm0.1(theo)pb$

CDF recently measured the Top cross section through Top/Z ratio with greatly reduced systematic uncertainty due to lumi.

The uncertainty in one single measurement is 8.2% (9.7% in direct measurement), comparable to theoretical uncertainty.

M(ttbar) Diff. Cross Section/Spectrum

M(tt) sensitive to a broad class of NP models, e.g. peak-dip structure (MSSM), narrow resonances (Z' boson). No evidence for new physics.

Search for New Physics – ttH(->bbar)

Search for New Physics – t'

Selected Results

- Single top production
- search, cross section (|Vtb|, anomalous coupling)
- Top pair production
- cross section, M(ttbar) spectrum
- search for new physics (ttH, t')
- Top decay
- branching ratio, FCNC, rare decay
- charged Higgs search
- -W-helicity (anomalous coupling)

Top mass

Top Decay - Branching Ratio

100% t→W+b in SM, deviations suggest NP


```
R = Br(t->Wb)/Br(t->Wq)
> 0.79 @95% C.L.
|V_{tb}| > 0.89@95\% C.L. (if 3x3 CKM is unitary)
```

Top Decay – FCNC, Invisible Decay

SM FCNC branching ratio $\sim 10^{-14}$

$$B(t \rightarrow Zq) < 3.7\% @ 95\% \text{ C.L.}$$

Invisible Decay Search:

Measure absolute rate of events with 2 btag-jets to determine Br(t->X). X is a state with different acceptance than Wb

$$B(t \rightarrow Zc) < 13\%$$

 $B(t \rightarrow \text{invisible}) < 9\%$

CDF Run II Preliminary 1.9 fb⁻¹

CD1 Rull II 1 Ichilinary 1.910				
Decay	$\mathcal{R}_{ ext{wx/ww}}\left(\% ight)$	Upper Limit (%) (175 GeV)	Upper Limit (%) (172.5 GeV)	Upper Limit (%) (170 GeV)
$\mathscr{B}(t \to Zc)$	32	13	15	18
$\mathscr{B}(t \to gc)$	27	12	14	17
$\mathscr{B}(t o \gamma c)$	18	11	12	15
$\mathscr{B}(t \to \text{invisible})$	0	9	10	12

Top Decay – H+ (mH+<mt) Search

Top Decay - W-Helicity

W helicity in top quark decays

 Reconstruct helicity angle of lepton in top quark pair event

Constraints on Anomalous Couplings

Constraints on Anomalous Couplings

Constraint from W-helicity

Combined with the constraint from single top

Selected Results

- Single top production
- search, cross section (|Vtb|, anomalous coupling)
- Top pair production
- cross section, M(ttbar) differential cross section/spectrum
- search for new physics (ttH, t')
- Top decay
- branching ratio, FCNC, rare decay
- charged Higgs search
- -W-helicity (anomalous coupling)
- Top mass

Top Quark Mass

Top Quark Mass - Matrix Element Method

 The M.E. method is based on the calculation of event probability densities which are taken to be the sum of all contributing (and assumed to be non-interfering) processes. For example, in the case of two major processes:

$$P_{\text{evt}}(x; m_t) = f_{top} P_{sig}(x; m_t, JES) + (1 - f_{top}) P_{bkg}(x; JES)$$

 Probabilities are taken to be the differential cross sections for the process in question. For example, the signal probability is given by:

$$\begin{split} P_{sig}(x; m_{top}) &= \frac{d\sigma(x; m_{top})}{\sigma_{obs}(m_{top})} \\ &= \frac{1}{\sigma_{obs}(m_{top})} \times \int d\sigma(y) dq_1 dq_2 f(q_1) f(q_2) W(y, x) \end{split}$$

where:
$$d\sigma = \frac{(2\pi)^4 |\mathbf{M}|^2}{4\sqrt{(q_1 \cdot q_2 - m_1 m_2)}} d\Phi_6$$

Top Quark Mass - Matrix Element Method

Probabilities are calculated for each individual event as a function of m_{top} (and JES):

$$L (x_1...x_n; m_{top}) = \prod_{i=1}^n P(x_i; m_{top})$$

 $173.0\pm1.9(stat+JES)\pm1.0(syst)$ GeV

Top Quark Mass – Template Method

$$\mathcal{L}_{k} = \exp\left(-\frac{(n_{b} - n_{b}^{0})^{2}}{2\sigma_{n_{b}}^{2}}\right) \times \prod_{i=1}^{N} \frac{n_{s} P_{sig}(m_{i}, y_{i}; M_{top}, \Delta_{JES}) + n_{b} P_{bg}(m_{i}, y_{i})}{n_{s} + n_{b}}$$

Top Quark Mass – Template Method

Combined: 171.8 ± 1.5 (stat.+JES) ± 1.1 (syst) GeV/c²

Top Quark Mass – Direct Measurements

- Fundamental parameter of the SM
- Important ingredient for EW precision analyses
 - ⇒ incisive consistency checks
 - ⇒ constrain/rule out models
- Sophisticated techniques to minimize statistical and dominant systematic uncertainties.
- Current world-average (most sensitive channels use up to 2.7 fb^{-1}):

$$m_t = 1724 \pm 0.7 (stat) \pm 1.0 (syst) GeV$$

Measurements are limited by systematic uncertainties (signal modeling, b-jet response).

Tevatron Top Quark Mass

Best Independent Measurements (* = preliminary)

Top Quark Mass - From Cross Section

Assuming SM production, top mass can be extracted by comparing measured to calculated cross sections

- mass is measured in a well-defined renormalization scheme
- systematic largely uncorrelated with other methods

Summary

A broad and exciting Top physics program on-going at the Tevatron.

- Many new results, consistent with SM.
 - More results at http://www-cdf.fnal.gov/physics/new/top/top.html
 http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html
- Keep trying to improve sensitivity and precision.